Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 24
Filtre
1.
Curr Opin Neurol ; 36(3): 185-197, 2023 06 01.
Article Dans Anglais | MEDLINE | ID: covidwho-20241311

Résumé

PURPOSE OF REVIEW: Vaccinations have been pivotal in lowering the global disease burden of vaccine-preventable encephalitides, including Japanese encephalitis, tick-borne encephalitis, measles encephalitis, and rabies encephalitis, among others. RECENT FINDINGS: Populations vulnerable to vaccine-preventable infections that may lead to encephalitis include those living in endemic and rural areas, military members, migrants, refugees, international travelers, younger and older persons, pregnant women, the immunocompromised, outdoor, healthcare and laboratory workers, and the homeless. There is scope for improving the availability and distribution of vaccinations, vaccine equity, surveillance of vaccine-preventable encephalitides, and public education and information. SUMMARY: Addressing these gaps in vaccination strategies will allow for improved vaccination coverage and lead to better health outcomes for those most at risk for vaccine-preventable encephalitis.


Sujets)
Encéphalite japonaise , Encéphalite , Humains , Femelle , Grossesse , Sujet âgé , Sujet âgé de 80 ans ou plus , Populations vulnérables , Encéphalite japonaise/épidémiologie , Encéphalite japonaise/prévention et contrôle , Vaccination
2.
J Neuropsychiatry Clin Neurosci ; : appineuropsych22010002, 2022 Jul 25.
Article Dans Anglais | MEDLINE | ID: covidwho-2324932

Résumé

Encephalopathy, a common condition among patients hospitalized with COVID-19, can be a challenge to manage and negatively affect prognosis. While encephalopathy may present clinically as delirium, subsyndromal delirium, or coma and may be a result of systemic causes such as hypoxia, COVID-19 has also been associated with more prolonged encephalopathy due to less common but nevertheless severe complications, such as inflammation of the brain parenchyma (with or without cerebrovascular involvement), demyelination, or seizures, which may be disproportionate to COVID-19 severity and require specific management. Given the large number of patients hospitalized with severe acute respiratory syndrome coronavirus-2 infection, even these relatively unlikely complications are increasingly recognized and are particularly important because they require specific management. Therefore, the aim of this review is to provide pragmatic guidance on the management of COVID-19 encephalopathy through consensus agreement of the Global COVID-19 Neuro Research Coalition. A systematic literature search of MEDLINE, medRxiv, and bioRxiv was conducted between January 1, 2020, and June 21, 2021, with additional review of references cited within the identified bibliographies. A modified Delphi approach was then undertaken to develop recommendations, along with a parallel approach to score the strength of both the recommendations and the supporting evidence. This review presents analysis of contemporaneous evidence for the definition, epidemiology, and pathophysiology of COVID-19 encephalopathy and practical guidance for clinical assessment, investigation, and both acute and long-term management.

3.
Ann Neurol ; 2022 Oct 19.
Article Dans Anglais | MEDLINE | ID: covidwho-2230550

Résumé

OBJECTIVE: The objective of this study was to assess the impact of treatment with dexamethasone, remdesivir or both on neurological complications in acute coronavirus diease 2019 (COVID-19). METHODS: We used observational data from the International Severe Acute and emerging Respiratory Infection Consortium World Health Organization (WHO) Clinical Characterization Protocol, United Kingdom. Hospital inpatients aged ≥18 years with laboratory-confirmed severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection admitted between January 31, 2020, and June 29, 2021, were included. Treatment allocation was non-blinded and performed by reporting clinicians. A propensity scoring methodology was used to minimize confounding. Treatment with remdesivir, dexamethasone, or both was assessed against the standard of care. The primary outcome was a neurological complication occurring at the point of death, discharge, or resolution of the COVID-19 clinical episode. RESULTS: Out of 89,297 hospital inpatients, 64,088 had severe COVID-19 and 25,209 had non-hypoxic COVID-19. Neurological complications developed in 4.8% and 4.5%, respectively. In both groups, neurological complications were associated with increased mortality, intensive care unit (ICU) admission, worse self-care on discharge, and time to recovery. In patients with severe COVID-19, treatment with dexamethasone (n = 21,129), remdesivir (n = 1,428), and both combined (n = 10,846) were associated with a lower frequency of neurological complications: OR = 0.76 (95% confidence interval [CI] = 0.69-0.83), OR = 0.69 (95% CI = 0.51-0.90), and OR = 0.54 (95% CI = 0.47-0.61), respectively. In patients with non-hypoxic COVID-19, dexamethasone (n = 2,580) was associated with less neurological complications (OR = 0.78, 95% CI = 0.62-0.97), whereas the dexamethasone/remdesivir combination (n = 460) showed a similar trend (OR = 0.63, 95% CI = 0.31-1.15). INTERPRETATION: Treatment with dexamethasone, remdesivir, or both in patients hospitalized with COVID-19 was associated with a lower frequency of neurological complications in an additive manner, such that the greatest benefit was observed in patients who received both drugs together. ANN NEUROL 2022.

4.
PLoS One ; 17(9): e0273704, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2054330

Résumé

INTRODUCTION: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool for understanding the neuropsychiatric complications of COVID-19. For maximum impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection on the brain by diverse potentially pathogenic mechanisms, and with high reliability across multiple sites and scanner manufacturers. Here we describe the development of such a protocol, based upon the UK Biobank, and its validation with a travelling heads study. A multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging (swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility and between-site variability of this protocol, N = 8 healthy participants were each scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE scanner (King's College London). Over 2,000 Imaging Derived Phenotypes (IDPs), measuring both data quality and regional image properties of interest, were automatically estimated by customised UKB image processing pipelines (S2 File). Components of variance and intra-class correlations (ICCs) were estimated for each IDP by linear mixed effects models and benchmarked by comparison to repeated measurements of the same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability. Considering only data from the Siemens sites, between-site reliability generally matched the high levels of test-retest reliability of the same IDPs estimated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent reliability for many IDPs, although there were significant between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1, T2-FLAIR and dMRI data. CONCLUSION: These results give confidence that large, multi-site MRI datasets can be collected reliably at different sites across the diverse range of MRI modalities and IDPs that could be mechanistically informative in COVID brain research. We discuss limitations of the study and strategies for further harmonisation of data collected from sites using scanners supplied by different manufacturers. These acquisition and analysis protocols are now in use for MRI assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study.


Sujets)
COVID-19 , IDP , Biobanques , Encéphale/imagerie diagnostique , COVID-19/imagerie diagnostique , Humains , Imagerie par résonance magnétique , Phénotype , Reproductibilité des résultats , SARS-CoV-2 , Royaume-Uni
5.
Brain ; 145(11): 4097-4107, 2022 11 21.
Article Dans Anglais | MEDLINE | ID: covidwho-2017743

Résumé

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Sujets)
Lésions encéphaliques , COVID-19 , Grippe humaine , Humains , Protéines neurofilamenteuses , COVID-19/complications , Marqueurs biologiques , Autoanticorps , Immunité
6.
Front Neurol ; 13: 882905, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1952455

Résumé

Although SARS-CoV-2 causes a respiratory viral infection, there is a large incidence of neurological complications occurring in COVID-19 patients. These range from headaches and loss of smell to encephalitis and strokes. Little is known about the likely diverse mechanisms causing these pathologies and there is a dire need to understand how to prevent and treat them. This review explores recent research from the perspective of investigating how the immune system could play a role in neurological complications, including cytokines, blood biomarkers, immune cells, and autoantibodies. We also discuss lessons learnt from animal models. Overall, we highlight two key points that have emerged from increasing evidence: (1) SARS-CoV-2 does not invade the brain in the majority of cases and so the associated neurological complications might arise from indirect effects, such as immune activation (2) although the immune system plays a critical role in controlling the virus, its dysregulation can cause pathology.

7.
BMJ Neurol Open ; 4(2): e000309, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1932719

Résumé

Objective: To investigate features of Guillain-Barré syndrome (GBS) following SARS-CoV-2 vaccines and evaluate for a causal link between the two. Methods: We captured cases of GBS after SARS-CoV-2 vaccination through a national, open-access, online surveillance system. For each case, the certainty of GBS was graded using the Brighton criteria, and the relationship to the vaccine was examined using modified WHO Causality Assessment criteria. We compared age distribution of cases with that of prepandemic GBS cases and clinical features with the International GBS Outcome Study (IGOS). Results: Between 1 January and 30 June 2021, we received 67 reports of GBS following the ChAdOx1 vaccine (65 first doses) and three reports following the BNT162b2 vaccine (all first doses). The causal association with the vaccine was classified as probable for 56 (80%, all ChAdOx1), possible for 12 (17%, 10 ChAdOx1) and unlikely for two (3%, 1 ChAdOx1). A greater proportion of cases occurred in the 50-59 age group in comparison with prepandemic GBS. Most common clinical variants were sensorimotor GBS (n=55; 79%) and facial diplegia with paraesthesias (n=10; 14%). 10% (n=7/69) of patients reported an antecedent infection, compared with 77% (n=502/652) of the IGOS cohort (p<0.00001). Facial weakness (63% (n=44/70) vs 36% (n=220/620); p<0.00001) and sensory dysfunction (93% (n=63/68) vs 69% (n=408/588); p=0.00005) were more common but disease severity and outcomes were similar to the IGOS study. Interpretation: Most reports of GBS followed the first dose of ChAdOx1 vaccine. While our study cannot confirm or refute causation, this observation, together with the absence of alternative aetiologies, different than expected age distribution and the presence of unusual clinical features support a causal link. Clinicians and surveillance bodies should remain vigilant to the possibility of this very rare adverse event and its atypical variants.

8.
PLoS One ; 17(6): e0263595, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1875082

Résumé

BACKGROUND: Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. METHODS: We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. RESULTS: We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. INTERPRETATION: Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission.


Sujets)
COVID-19 , Accident vasculaire cérébral , COVID-19/complications , COVID-19/thérapie , Hospitalisation , Humains , Pronostic , Facteurs de risque
9.
Viruses ; 14(5)2022 05 11.
Article Dans Anglais | MEDLINE | ID: covidwho-1869805

Résumé

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.


Sujets)
Angiotensin-converting enzyme 2 , COVID-19 , Système nerveux central , Tropisme viral , Angiotensin-converting enzyme 2/génétique , Animaux , COVID-19/complications , Système nerveux central/physiopathologie , Système nerveux central/virologie , Humains , Souris , Souris transgéniques , SARS-CoV-2/génétique ,
10.
J Neurol ; 269(6): 2827-2839, 2022 Jun.
Article Dans Anglais | MEDLINE | ID: covidwho-1767491

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the aetiologic agent of the coronavirus disease 2019 (COVID-19), is now rapidly disseminating throughout the world with 147,443,848 cases reported so far. Around 30-80% of cases (depending on COVID-19 severity) are reported to have neurological manifestations including anosmia, stroke, and encephalopathy. In addition, some patients have recognised autoimmune neurological disorders, including both central (limbic and brainstem encephalitis, acute disseminated encephalomyelitis [ADEM], and myelitis) and peripheral diseases (Guillain-Barré and Miller Fisher syndrome). We systematically describe data from 133 reported series on the Neurology and Neuropsychiatry of COVID-19 blog ( https://blogs.bmj.com/jnnp/2020/05/01/the-neurology-and-neuropsychiatry-of-covid-19/ ) providing a comprehensive overview concerning the diagnosis, and treatment of patients with neurological immune-mediated complications of SARS-CoV-2. In most cases the latency to neurological disorder was highly variable and the immunological or other mechanisms involved were unclear. Despite specific neuronal or ganglioside antibodies only being identified in 10, many had apparent responses to immunotherapies. Although the proportion of patients experiencing immune-mediated neurological disorders is small, the total number is likely to be underestimated. The early recognition and improvement seen with use of immunomodulatory treatment, even in those without identified autoantibodies, makes delayed or missed diagnoses risk the potential for long-term disability, including the emerging challenge of post-acute COVID-19 sequelae (PACS). Finally, potential issues regarding the use of immunotherapies in patients with pre-existent neuro-immunological disorders are also discussed.


Sujets)
COVID-19 , Syndrome de Guillain-Barré , Maladies du système nerveux , Accident vasculaire cérébral , COVID-19/complications , Syndrome de Guillain-Barré/étiologie , Humains , Maladies du système nerveux/épidémiologie , Maladies du système nerveux/étiologie , Maladies du système nerveux/thérapie , SARS-CoV-2 , Accident vasculaire cérébral/complications
11.
Brain Commun ; 4(1): fcab297, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1692248

Résumé

The nature and extent of persistent neuropsychiatric symptoms after COVID-19 are not established. To help inform mental health service planning in the pandemic recovery phase, we systematically determined the prevalence of neuropsychiatric symptoms in survivors of COVID-19. For this pre-registered systematic review and meta-analysis (PROSPERO ID CRD42021239750), we searched MEDLINE, EMBASE, CINAHL and PsycINFO to 20 February 2021, plus our own curated database. We included peer-reviewed studies reporting neuropsychiatric symptoms at post-acute or later time-points after COVID-19 infection and in control groups where available. For each study, a minimum of two authors extracted summary data. For each symptom, we calculated a pooled prevalence using generalized linear mixed models. Heterogeneity was measured with I 2. Subgroup analyses were conducted for COVID-19 hospitalization, severity and duration of follow-up. From 2844 unique titles, we included 51 studies (n = 18 917 patients). The mean duration of follow-up after COVID-19 was 77 days (range 14-182 days). Study quality was most commonly moderate. The most prevalent neuropsychiatric symptom was sleep disturbance [pooled prevalence = 27.4% (95% confidence interval 21.4-34.4%)], followed by fatigue [24.4% (17.5-32.9%)], objective cognitive impairment [20.2% (10.3-35.7%)], anxiety [19.1% (13.3-26.8%)] and post-traumatic stress [15.7% (9.9-24.1%)]. Only two studies reported symptoms in control groups, both reporting higher frequencies in COVID-19 survivors versus controls. Between-study heterogeneity was high (I 2 = 79.6-98.6%). There was little or no evidence of differential symptom prevalence based on hospitalization status, severity or follow-up duration. Neuropsychiatric symptoms are common and persistent after recovery from COVID-19. The literature on longer-term consequences is still maturing but indicates a particularly high prevalence of insomnia, fatigue, cognitive impairment and anxiety disorders in the first 6 months after infection.

13.
Brain Commun ; 3(3): fcab168, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1364745

Résumé

SARS-CoV-2 is associated with new-onset neurological and psychiatric conditions. Detailed clinical data, including factors associated with recovery, are lacking, hampering prediction modelling and targeted therapeutic interventions. In a UK-wide cross-sectional surveillance study of adult hospitalized patients during the first COVID-19 wave, with multi-professional input from general and sub-specialty neurologists, psychiatrists, stroke physicians, and intensivists, we captured detailed data on demographics, risk factors, pre-COVID-19 Rockwood frailty score, comorbidities, neurological presentation and outcome. A priori clinical case definitions were used, with cross-specialty independent adjudication for discrepant cases. Multivariable logistic regression was performed using demographic and clinical variables, to determine the factors associated with outcome. A total of 267 cases were included. Cerebrovascular events were most frequently reported (131, 49%), followed by other central disorders (95, 36%) including delirium (28, 11%), central inflammatory (25, 9%), psychiatric (25, 9%), and other encephalopathies (17, 7%), including a severe encephalopathy (n = 13) not meeting delirium criteria; and peripheral nerve disorders (41, 15%). Those with the severe encephalopathy, in comparison to delirium, were younger, had higher rates of admission to intensive care and a longer duration of ventilation. Compared to normative data during the equivalent time period prior to the pandemic, cases of stroke in association with COVID-19 were younger and had a greater number of conventional, modifiable cerebrovascular risk factors. Twenty-seven per cent of strokes occurred in patients <60 years. Relative to those >60 years old, the younger stroke patients presented with delayed onset from respiratory symptoms, higher rates of multi-vessel occlusion (31%) and systemic thrombotic events. Clinical outcomes varied between disease groups, with cerebrovascular disease conferring the worst prognosis, but this effect was less marked than the pre-morbid factors of older age and a higher pre-COVID-19 frailty score, and a high admission white cell count, which were independently associated with a poor outcome. In summary, this study describes the spectrum of neurological and psychiatric conditions associated with COVID-19. In addition, we identify a severe COVID-19 encephalopathy atypical for delirium, and a phenotype of COVID-19 associated stroke in younger adults with a tendency for multiple infarcts and systemic thromboses. These clinical data will be useful to inform mechanistic studies and stratification of patients in clinical trials.

14.
EClinicalMedicine ; 39: 101070, 2021 Sep.
Article Dans Anglais | MEDLINE | ID: covidwho-1351631

Résumé

BACKGROUND: A high prevalence of antiphospholipid antibodies has been reported in case series of patients with neurological manifestations and COVID-19; however, the pathogenicity of antiphospholipid antibodies in COVID-19 neurology remains unclear. METHODS: This single-centre cross-sectional study included 106 adult patients: 30 hospitalised COVID-neurological cases, 47 non-neurological COVID-hospitalised controls, and 29 COVID-non-hospitalised controls, recruited between March and July 2020. We evaluated nine antiphospholipid antibodies: anticardiolipin antibodies [aCL] IgA, IgM, IgG; anti-beta-2 glycoprotein-1 [aß2GPI] IgA, IgM, IgG; anti-phosphatidylserine/prothrombin [aPS/PT] IgM, IgG; and anti-domain I ß2GPI (aD1ß2GPI) IgG. FINDINGS: There was a high prevalence of antiphospholipid antibodies in the COVID-neurological (73.3%) and non-neurological COVID-hospitalised controls (76.6%) in contrast to the COVID-non-hospitalised controls (48.2%). aPS/PT IgG titres were significantly higher in the COVID-neurological group compared to both control groups (p < 0.001). Moderate-high titre of aPS/PT IgG was found in 2 out of 3 (67%) patients with acute disseminated encephalomyelitis [ADEM]. aPS/PT IgG titres negatively correlated with oxygen requirement (FiO2 R=-0.15 p = 0.040) and was associated with venous thromboembolism (p = 0.043). In contrast, aCL IgA (p < 0.001) and IgG (p < 0.001) was associated with non-neurological COVID-hospitalised controls compared to the other groups and correlated positively with d-dimer and creatinine but negatively with FiO2. INTERPRETATION: Our findings show that aPS/PT IgG is associated with COVID-19-associated ADEM. In contrast, aCL IgA and IgG are seen much more frequently in non-neurological hospitalised patients with COVID-19. Characterisation of antiphospholipid antibody persistence and potential longitudinal clinical impact are required to guide appropriate management. FUNDING: This work is supported by UCL Queen Square Biomedical Research Centre (BRC) and Moorfields BRC grants (#560441 and #557595). LB is supported by a Wellcome Trust Fellowship (222102/Z/20/Z). RWP is supported by an Alzheimer's Association Clinician Scientist Fellowship (AACSF-20-685780) and the UK Dementia Research Institute. KB is supported by the Swedish Research Council (#2017-00915) and the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986). HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), and theUK Dementia Research Institute at UCL. BDM is supported by grants from the MRC/UKRI (MR/V007181/1), MRC (MR/T028750/1) and Wellcome (ISSF201902/3). MSZ, MH and RS are supported by the UCL/UCLH NIHR Biomedical Research Centre and MSZ is supported by Queen Square National Brain Appeal.

16.
Journal of Neurology, Neurosurgery and Psychiatry ; 92(8):A2, 2021.
Article Dans Anglais | ProQuest Central | ID: covidwho-1315816

Résumé

As the clinical features and potential complications of COVID-19 emerged last year it became clear that neurological, neuropsychiatric and psychiatric disorders were potentially significant. There were also reasons to expect this from past viral outbreaks, including other severe coronaviruses. The CoroNerve study, led by Ben Michael and colleagues, was rapidly set up to as a UK-wide surveillance system for clinicians to initially briefly notify cases and later provide full clinical details. A psychiatry reporting system, led by the RCPsych neuropsychiatry faculty, was added and the first 153 notifications were published last June. The full clinical details of the first 267 cases completed were published as a preprint in January.The has been a rapid growth in the number and quality of publications regarding the neuropsychiatry of COVID-19 and this has been collated on the JNNP Neurology & Neuropsychiatry of COVID-19 blog which we set up to respond to the need for rapid capture and synthesis of a fast moving field with weekly updates and publications from a growing international team, including a recently published preprint systematic review and meta-analysis of the neurology and neuropsychiatry of COVID-19. We will jointly review the CoroNerve data and its context in the emerging wider evidence base regarding the neuropsychiatry of COVID-19, highlighting exciting new research areas such as long COVID and projects such as the recently started COVID-CNS study funded by UKRI.We would like to thank those who have already submitted cases to CoroNerve and encourage others to do the same, including those associated with COVID-19 vaccination, and to flag up that notifying a case and providing data results in pubmed searchable collaborator status on resulting publications.

17.
Lancet Child Adolesc Health ; 5(9): 631-641, 2021 09.
Article Dans Anglais | MEDLINE | ID: covidwho-1309416

Résumé

BACKGROUND: The spectrum of neurological and psychiatric complications associated with paediatric SARS-CoV-2 infection is poorly understood. We aimed to analyse the range and prevalence of these complications in hospitalised children and adolescents. METHODS: We did a prospective national cohort study in the UK using an online network of secure rapid-response notification portals established by the CoroNerve study group. Paediatric neurologists were invited to notify any children and adolescents (age <18 years) admitted to hospital with neurological or psychiatric disorders in whom they considered SARS-CoV-2 infection to be relevant to the presentation. Patients were excluded if they did not have a neurological consultation or neurological investigations or both, or did not meet the definition for confirmed SARS-CoV-2 infection (a positive PCR of respiratory or spinal fluid samples, serology for anti-SARS-CoV-2 IgG, or both), or the Royal College of Paediatrics and Child Health criteria for paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS). Individuals were classified as having either a primary neurological disorder associated with COVID-19 (COVID-19 neurology group) or PIMS-TS with neurological features (PIMS-TS neurology group). The denominator of all hospitalised children and adolescents with COVID-19 was collated from National Health Service England data. FINDINGS: Between April 2, 2020, and Feb 1, 2021, 52 cases were identified; in England, there were 51 cases among 1334 children and adolescents hospitalised with COVID-19, giving an estimated prevalence of 3·8 (95% CI 2·9-5·0) cases per 100 paediatric patients. 22 (42%) patients were female and 30 (58%) were male; the median age was 9 years (range 1-17). 36 (69%) patients were Black or Asian, 16 (31%) were White. 27 (52%) of 52 patients were classified into the COVID-19 neurology group and 25 (48%) were classified into the PIMS-TS neurology group. In the COVID-19 neurology group, diagnoses included status epilepticus (n=7), encephalitis (n=5), Guillain-Barré syndrome (n=5), acute demyelinating syndrome (n=3), chorea (n=2), psychosis (n=2), isolated encephalopathy (n=2), and transient ischaemic attack (n=1). The PIMS-TS neurology group more often had multiple features, which included encephalopathy (n=22 [88%]), peripheral nervous system involvement (n=10 [40%]), behavioural change (n=9 [36%]), and hallucinations at presentation (n=6 [24%]). Recognised neuroimmune disorders were more common in the COVID-19 neurology group than in the PIMS-TS neurology group (13 [48%] of 27 patients vs 1 [<1%] of 25 patients, p=0·0003). Compared with the COVID-19 neurology group, more patients in the PIMS-TS neurology group were admitted to intensive care (20 [80%] of 25 patients vs six [22%] of 27 patients, p=0·0001) and received immunomodulatory treatment (22 [88%] patients vs 12 [44%] patients, p=0·045). 17 (33%) patients (10 [37%] in the COVID-19 neurology group and 7 [28%] in the PIMS-TS neurology group) were discharged with disability; one (2%) died (who had stroke, in the PIMS-TS neurology group). INTERPRETATION: This study identified key differences between those with a primary neurological disorder versus those with PIMS-TS. Compared with patients with a primary neurological disorder, more patients with PIMS-TS needed intensive care, but outcomes were similar overall. Further studies should investigate underlying mechanisms for neurological involvement in COVID-19 and the longer-term outcomes. FUNDING: UK Research and Innovation, Medical Research Council, Wellcome Trust, National Institute for Health Research.


Sujets)
COVID-19 , Enfant hospitalisé , Troubles mentaux/psychologie , Maladies du système nerveux/diagnostic , Médecine d'État , COVID-19/complications , COVID-19/épidémiologie , Enfant , Études de cohortes , Femelle , Hospitalisation , Humains , Mâle , Sortie du patient , Études prospectives , Royaume-Uni/épidémiologie
18.
J Neurol Sci ; 427: 117532, 2021 08 15.
Article Dans Anglais | MEDLINE | ID: covidwho-1253235

Résumé

BACKGROUND: Vaccine induced immune mediated thrombocytopenia or VITT, is a recent and rare phenomenon of thrombosis with thrombocytopenia, frequently including cerebral venous thromboses (CVT), that has been described following vaccination with adenovirus vaccines ChAdOx1 nCOV-19 (AstraZeneca) and Ad26.COV2·S Johnson and Johnson (Janssen/J&J). The evaluation and management of suspected cases of CVT post COVID-19 vaccination are critical skills for a broad range of healthcare providers. METHODS: A collaborative comprehensive review of literature was conducted among a global group of expert neurologists and hematologists. FINDINGS: Strategies for rapid evaluation and treatment of the CVT in the context of possible VITT exist, including inflammatory marker measurements, PF4 assays, and non-heparin anticoagulation.


Sujets)
COVID-19 , Thrombose veineuse , Vaccins contre la COVID-19 , Vaccin ChAdOx1 nCoV-19 , Humains , SARS-CoV-2 , Vaccination/effets indésirables , Thrombose veineuse/thérapie
19.
Ann Neurol ; 2021 Apr 09.
Article Dans Anglais | MEDLINE | ID: covidwho-1173774

Résumé

There is an accumulating volume of research into neurological manifestations of COVID-19. However, inconsistent study designs, inadequate controls, poorly-validated tests, and differing settings, interventions, and cultural norms weaken study quality, comparability, and thus the understanding of the spectrum, burden and pathophysiology of these complications. Therefore, a global COVID-19 Neuro Research Coalition, together with the WHO, has reviewed reports of COVID-19 neurological complications and harmonised clinical measures for future research. This will facilitate well-designed studies using precise, consistent case definitions of SARS-CoV2 infection and neurological complications, with standardised forms for pooled data analyses that non-specialists can use, including in low-income settings. This article is protected by copyright. All rights reserved.

SÉLECTION CITATIONS
Détails de la recherche